

Gerotor Pump Performance Correlation Study – Version 2.0.30

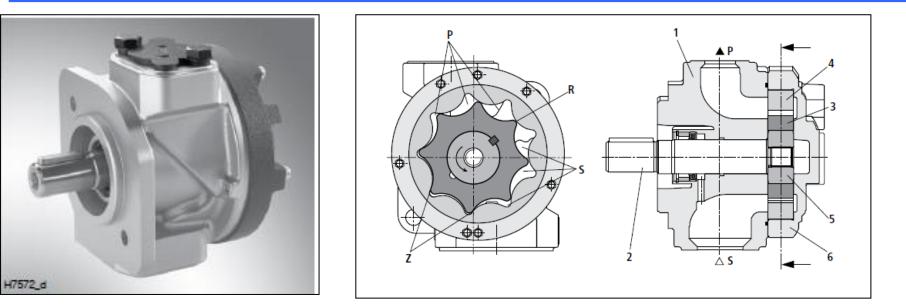
17/03/2016

Correlated Pumps:

•Bosch Rexroth PGZ4 •Size '80' – Model PGZ4-1X/080RA07VE4

Parker Hannifin PGG20010

•Miniature Gerotor – Fluid Power Research Laboratory, University of Turin, Italy



www.gerotordesignstudio.com

Bosch Rexroth PGZ4 Model PGZ4-1X/080RA07VE4

Bosch Rexroth PGZ4 Series:

Fixed Displacement (no pressure relief valve)
Single sided porting, but with Shadow Porting feature
8 lobes Inner / 9 lobes Outer
Information from www.boschrexroth.com

Bosch Rexroth PGZ4 Series:

www.gerotordesignstudio.com

general											
Туре			Gerotor pur	Gerotor pump							
Type of connection			SAE 2-hole ISO 2-hole r	mounting flang mounting flan mounting flang mounting flang	ge e according to	ISO 3019-2, n	natching throug	gh-drive KB2			
Line connection			Flange conr	nection							
Shaft load			Radial and	axial forces ca	nnot be transr	nitted					
Direction of rotation (vie	ewed on s	haft end)	Clockwise								
hydraulic											
Hydraulic fluid			Please obs	ral oil accordir erve our spe s upon reque	cification acc		ta sheet RE 9	0220			
Hydraulic fluid temperat	ure range	°C	-20 to +80,	-20 to +80, observe the admissible viscosity range!							
Ambient temperature range °C			-20 to +80								
Viscosity range mm ² /s			10 to 2000								
Max admissible degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)			Class 21/18	3/15 ¹⁾							
Frame size 4	Frame s	ize	PGZ4								
Size	Size		20	32	40	50	63	80			
Displacement	V	cm ³	21.0	33.4	42.1	52.0	64.4	84.2			
Weight	m	kg	4.7	5.3	5.6	6.0	6.7	7.8			
Flow 2)	q_{V}	l/min	28	46	58	71	88	116			
Mass moment of inertia (around drive axis)	J	kgm ²	0.00086	0.00134	0.00167	0.00205	0.00253	0.00329			
Speed range	n _{min}	rpm	200	200	200	200	200	200			
	n _{max}	rpm	3000	3000	3000	3000	2300	1800			
Operating pressure, absolute – Inlet	p	bar									
Nominal pressure	P		0.7 to 2 (short-time during start 0.5 bar)								
- Outlet, continuous p _N bar				1		15					
Min required driving po – at $\Delta p \approx 1$ bar, $n = 1,4$		kW	0.75	1.1	11	11	11	11			
– aι Δp≈ i bai, n = 1,4		2.2	2.2	2.2	3.0	3.0					
– at ∆p ≈ 10 bar, n = 1,	450 min-1		1.5								

¹⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. An efficient filtration prevents failures and simultaneously increases the lifetime of the components. For the selection of filters, see data sheets RE 50070, RE 50078, RE 50081, RE 50088 and RE 50088.

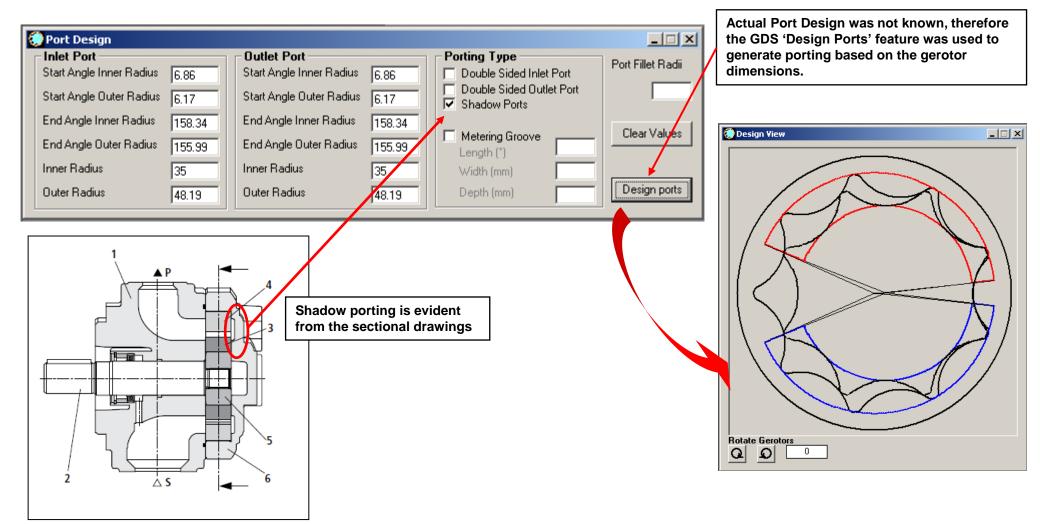
²⁾ Measured at n = 1.450 rpm, p = 10 bar, and v = 30 mm²/s


³⁾ Measured in sound-absorbent acoustic room at n = 1450 rpm and v = 30 mm²/s

PGZ <mark>5</mark> -1X/ RA07VE4
Drive shaft cylindrical,
4-hole mounting flange according to ISO 3019-2 and VDMA 24560
L1 ±1,2
52±0,5 42,5±0,2
42±0.2 (10) F
L2 ±0,2 75,1 ±0,6 67,9±0,6

Type Size	Material No.	L1	L2	H1	H2	S ¹⁾	P 1)
PGZ4-1X/020RA07VE4	R901230020	116,5	42,5	77,4	79,6	1 1/2"	1"
PGZ4-1X/032RA07VE4	R901230024	121,5	42,5	77,4	79,6	1 1/2"	1"
PGZ4-1X/040RA07VE4	R901230028	125	42,5	77,4	79,6	1 1/2"	1"
PGZ4-1X/050RA07VE4	R901230032	129	42,5	77,4	79,6	1 1/2"	1"
PGZ4-1X/063RA07VE4	R901230036	134	42,5	77,4	79,6	1 1/2"	1"
PGZ4-1X/080RA07VE4	R901230040	142	42,5	77,4	79,6	1 1/2"	1"
PGZ5-1X/063RA07VE4	R901230044	134	48,5	72,9	76,1	2"	1 1/4
PGZ5-1X/080RA07VE4	R901230048	142	48,5	72,9	76,1	2"	1 1/4
PGZ5-1X/100RA07VE4	R901230052	150,5	48,5	72,9	76,1	2"	1 1/4
PGZ5-1X/140RA07VE4	R901230056	163	48,5	72,9	76,1	2"	1 1/4

Bosch Rexroth PGZ4-1X/080RA07VE4:



Bosch Rexroth PGZ4-1X/080RA07VE4:

www.gerotordesignstudio.com

Build of GDS model – Porting Design

Bosch Rexroth PGZ4-1X/080RA07VE4:

www.gerotordesignstudio.com

Build of GDS model – Fluid / Material / Pump Properties

													1	Performance	
hydraulic									Specifications and Approvals					51.11D	
Hydraulic fluid			Please obs	al oil accordin erve our spe s upon reque		24 part 2 cording to dat	ta sheet RE 9	0220	Mobil DTE 10 ExcepSeries meets or exceeds the requirements of:	15	22	32		Fluid Properties Fluid Density (Kg/m ³)	0.17
Hydraulic fluid temperat	ure range	°C	-20 to +80,	observe the a	dmissible visc	osity range!			DIN 5152-2: 2006-09	Х	Х	Х		Fidio Density (Rg/III-5)	847
Ambient temperature ra	ange	°C	-20 to +80						DIN 51524 3: 2006-09	Х	Х	Х		Kinematic Viscosity (cS	t) <u>30</u>
Viscosity range		mm²/s	10 to 2000						ISO 11158 -HV	х	Х	Х			· 130
Frame size 4	Frame siz	ze			PC	GZ4			JCMAS HK (G32W (JCMAS P 041:2004)			X		Vapour Pressure (mmH	g) (0.1
Size	Size		20	32	40	50	63	80	JCMAS HK \$ 245W (JCMAS P 041:2004)						
Displacement	V	cm ³	21.0	33.4	42.1	52.0	64.4	84.2						Bulk Modulus (GPa)	1.85
Weight	m	kg	4.7	5.3	5.6	6.0	6.7	7.8	Bosch-Rexroth RE 90220-01			X			,
Flow 2)	q_{V}	l/min	28	46	58	71	88	116	Typical Properties					Gerotor Material Pr	operties
Mass moment of inertia (around drive axis)	J	kgm ²	0.00086	0.00134	0.00167	0.00205	0.00253	0.00329							Inner Outer
Speed range	n _{min}	rpm	200	200	200	200	200	200	Mobil DTE10 Excel	15	22	32		Youngs Mod (GPa)	
	n _{max}	rpm	3000	3000	3000	3000	2300	1800	ISO Viscosity Grade	15	22	32		roungs mod (ar a)	210 210
Operating pressure, absolute									Viscosity, ASTM D 445 cSt @ 40° C	15.8	22.4	32.7		Poissons Ratio	0.29 0.29
- Inlet	p	bar		0.7 to	2 (short-time	during start 0	1.5 bar)		cSt @ 100° C	4.07	5.07	6.63			
Nominal pressure - Outlet, continuous	p _N	bar				15			Viscosity Index, ASTM D 2270	168	164	164		Coefficient of Friction	0.1
Min required driving po – at $\Delta p \approx 1$ bar, $n = 1,4$		kW	0.75	1.1	1.1	1.1	1.1	1.1	Brookfield Viscosity ASTM D 2983, cP @ -20 °C			1090		Pump Performance	<u>Range</u>
$- \text{ at } \Delta p \approx 10 \text{ bar}, n = 1$			1.5	2.2	2.2	2.2	J .0	3.0	Brookfield Viscosity ASTM D 2983, cP @ -30			3360			
Sound pressure level a	t 0 – 15 bar ¹	3) dB(A)	55	56	57	59	60	62		0.000	0000			Speed Range (RPM)	200 ^{to} 1450
 The cleanliness class An efficient filtration For the selection of f 	, prevents fail	lures and	simultaneously	y increases th	e liteume of th	ne component	s.		Brookfield Viscosity ASTM D 2983, cP @ 40, °C Tapered Boller Beasing (OES L 13 A037), //	2020	6390	14240		Pressure Range (bar)	1 ^{to} 10
²⁾ Measured at n = 1.4					50081, RE 50	UHR and the s			Viscosity Loss	5	5	-			
³⁾ Measured in sound-a					30 mm²/s				Density 15° C, ASTM D 4052, kg/L	0.8375	0.8418	0.8468		Calculate Performance	
raulic Fluid sheet (mee	-												٦		

Pump speed and pressure ranges taken to match performance parameters from Rexroth technical specification sheet

💮 Performance

Fluid Properties

Fluid Density (Kg/m^3)

Kinematic Viscosity (cSt)

Vapour Pressure (mmHg)

Bulk Modulus (GPa)

Bosch Rexroth PGZ4-1X/080RA07VE4:

Limitations

VISCO

of 2.2 to 2.8e+5 Psi.

From www.wolfram.com website

Assumed value for the bulk modu

Density measured at 288.2 K

This is a record with the media properties of Mobil DTE 10 Excel

www.gerotordesignstudio.com

_ 🗆 🗙

847

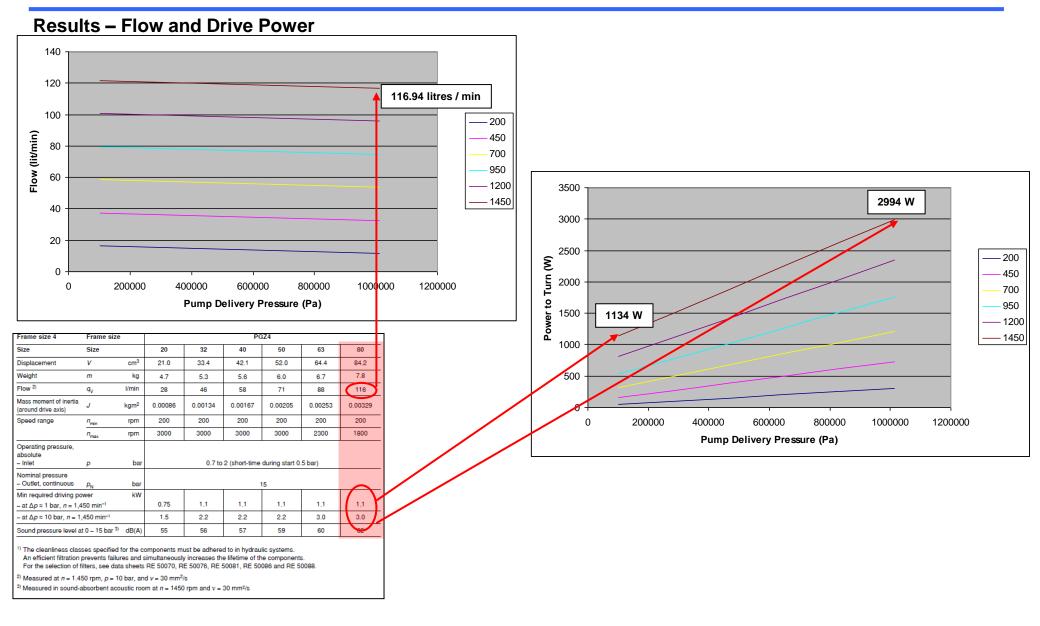
30

0.1

1.85

Build of GDS model – Fluid / Material / Pump Properties IMPORTANT HEALTH, SAFETY, AND ENVIRONMENTAL INFORMATION From Mobil 1 Relative Density (at 15 °C): 0.84 DTE10 MSDS Flash Point [Method]: >175°C (347°F) [ASTM D-92] Flammable Limits (Approximate volume % in air): LEL: 0.9 UEL: 7.0 Autoignition Temperature: N/D Boiling Point / Range: > 316°C (600°F) [Estimated] Vapor Density (Air = 1): > 2 at 101 kPa [Estimated] Vapor Pressure: < 0.013 kPa (0.1 mm Hg) at 20 °C [Estimated]. Evaporation Rate (n-butyl acetate = 1): N/D pH: N/A Log Pow (n-Octanol/Water Partition Coefficient): > 3.5 [Estimated] Solubility in Water: Negligible Viscosity: 32.5 cSt (32.5 mm2/sec) at 40 °C | 6.6 cSt (6.6 mm2/sec) at 100°C Oxidizing Properties: See Hazards Identification Section. DTE_10_Excel_32 Properties of Mobil DTE 10 Excel 32

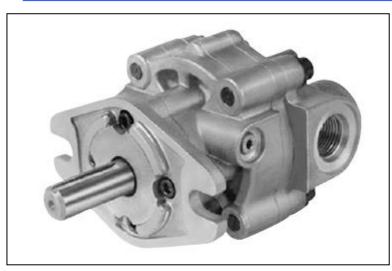
Gerotor Material Properties Outer Inner Youngs Mod (GPa) 210 210 Poissons Ratio 0.29 0.29 Coefficient of Friction 0.1 Pump Performance Range Speed Range (RPM) 200 to 1450 Pressure Range (bar) to 10 Calculate Performance


Youngs Modulus from <u>www.engineeringtoolbox.com</u>
Value is for high strength steel at 20-90°C
Poissons Ratio from <u>www.engineeringtoolbox.com</u>
Value is for high strength steel
Coefficient of Friction from average of internet sources (dynamic friction; steel and lubricated aluminium)

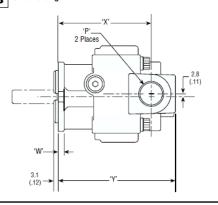
hydraulic oil.

actual value depends on the base stock (mineral oil), typical reference values

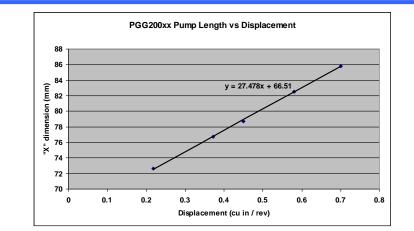
Gerotor Design Studio


www.gerotordesignstudio.com

Parker Hannifin Model PGG20010


www.gerotordesignstudio.com

Parker Hannifin PGG20010:



			acement/Re (Theoretica	Maxii Pres	Maximum Speed			
Pump Model	US Gallons	Cubic Inches	Liters	Cubic Centimeters	Imperial Gallons	PSI	BAR	RPM
PGG20010	.0010	.218	.0039	3.572	.0008	2000	138	3500
PGG20016	.0016	.372	.0062	6.096	.0013	2000	138	3500
PGG20020	.0020	.450	.0078	7.374	.0016	2000	138	3500
PGG20025	.0025	.580	.0097	9.505	.0021	2000	138	3500
PGG20030	.0030	.700	.0116	11.471	.0025	1500	104	3000

B Side Porting

	DIMEN	DIMENSIONS					
MODEL NO.	'X'	Ϋ́					
PGG20010	2.86 (72.6)	3.62 (91.9)					
PGG20016	3.02 (76.7)	3.78 (96.0)					
PGG20020	3.10 (78.7)	3.87 (98.3)					
PGG20025	3.25 (82.5)	4.00 (101.6)					
PGG20030	3.38 (85.8)	4.14 (105.1)					

Series of pumps based on same basic dimensions

Only dimension change is length (X and Y values)

Conclude that rotor set is the same, only different in length
Plot of Displacement vs Length shows linear relationship

Theoretical 'zero' displacement is at X=66.5mm
Therefore rotor length for PGG20010 pump should be

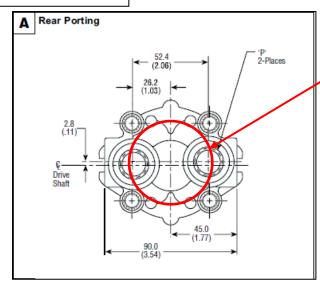
72.6-66.5 = 6.1mm

•Pump will undoubtedly have Nichols Portland Gerotor set

NP are part of the Parker Hannifin group

•Examination of NP standard gerotor sets shows 2 likely candidates for gerotor forms:

•4086 – 4 x inner lobes; 0.86in³/rev per inch of length


•6095 – 6 x inner lobes; 0.95in³/rev per inch of length

- •However, 6095 has minimum OD of 57.10mm
 - •Likely not to fit inside pump housing (from scaling of drawings)

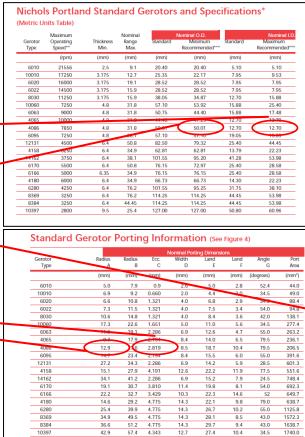
Pump Size	Displacement (in3/rev)	"X" Dimension	Delta "X"	Comments
0	0	66.5	0	From calculation
10	0.218	72.6	6.1	0.218cuin for 6.1mm length = 0.908cuin/inch
20	0.45	78.7	6.1	0.232cuin for 6.1mm length = 0.966cuin/inch
30	0.7	85.8	7.1	0.25cuin for 7.1mm length = 0.894cuin/inch

Nichols Portland Standard Gerotors and Specifications* (Metric Units Table)

Gerotor Type	Maximum Operating Speed**	Thickness Min.	Nominal Range Max.	Standard	Nominal O.D. Minimum Recommended***	Standard	Nominal I.C Maximum Recommended**
	(rpm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
6010	21556	2.5	9.1	20.40	20.40	5.10	5.10
10010	17250	3.175	12.7	25.35	22.17	7.95	9.53
6020	16000	3.175	19.1	28.52	28.52	7.95	7.95
6022	14500	3.175	15.9	28.52	28.52	7.95	7.95
8030	11250	3.175	15.9	38.05	34.87	12.70	15.88
10060	7250	4.8	31.8	57.10	53.92	15.88	25.40
6063	9000	4.8	31.8	50.75	44.40	15.88	17.48
4065	10000	4.8	31.8	44.40	41.25	12.70	12.70
4086	7850	4.8	31.8	50.01	50.01	12.70	12.70
6095	7250	4.8	38.1	57.10	57.10	19.05	19.05
12131	4500	6.4	50.8	82.50	79.32	25.40	44.45
4158	6250	6.4	34.9	62.81	62.81	13.79	22.23
14162	3750	6.4	38.1	101.55	95.20	41.28	53.98
6170	5500	6.4	50.8	76.15	72.97	25.40	28.58
6166	5000	6.35	34.9	76.15	76.15	25.40	28.58
4180	6000	6.4	34.9	66.73	66.73	14.30	22.23
6280	4250	6.4	76.2	101.55	95.25	31.75	38.10
8369	3250	6.4	76.2	114.25	114.25	44.45	53.98
8384	3250	6.4	44.45	114.25	114.25	44.45	53.98
10397	2800	9.5	25.4	127.00	127.00	50.80	60.96

57.10mm rotor set would allow no clearance to bolt bosses.

Therefore assumption is 4086 rotor set is used for PGG20010 (diameter 50.01mm)



www.gerotordesignstudio.com

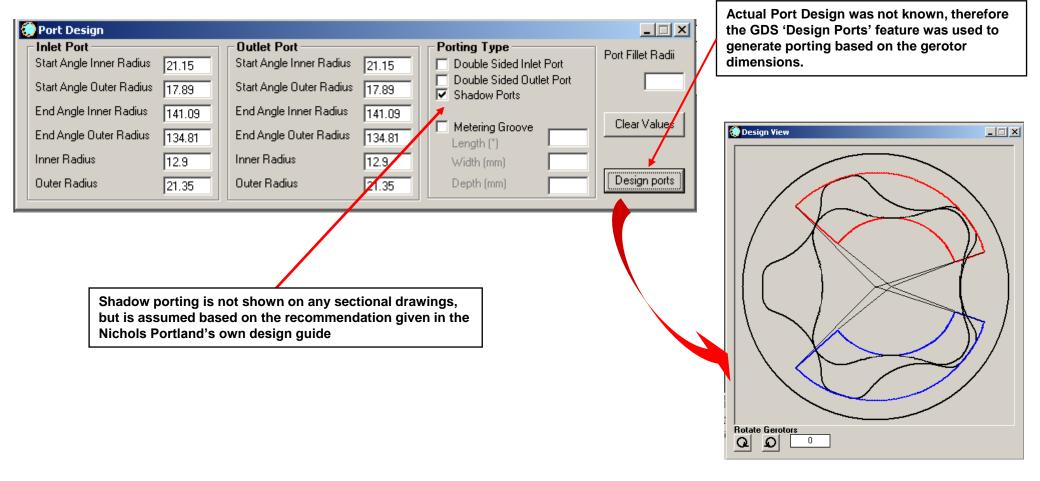
Build of GDS model – Gerotor Design 💮 Design - 🗆 × (Metric Units Table) Maximum Units: 💿 mm 🛛 inches Language: 👯 Gerotor Operating Thickness Туре Min (rpm) (mm) 6010 21556 2.5 Volume Read No. Outer Lobes 10010 17250 6020 16000 3.175 0.218 5 6022 14500 8030 3.175 11250 10060 7250 4.8 6063 9000 4.8 4065 0000 Shaft Diameter **Botor Tip Clearance** 4086 7850 4.8 6095 7250 0.08 4.8 12.7 6.4 12131 4500 4158 6.4 3750 6.4 6170 5500 6.4 **Rotor Thickness** Minimum Material Thickness 6166 5000 6.35 4180 6000 6.4 7 3 6280 4250 6.4 8369 3250 6.4 8384 3250 6.4 10397 2800 9.5 Maximum Outer Boter Diameter Axial Clearance 50.01 0.03 Design Rotors Gerotor Type (mm) 6010 5.0 **Badius Inner Boot Badius Outer Lobes** Eccentricity 10010 6.9 6020 6.6 2.819 12.9 127 6022 8030 10.6 17.3 006 6063 Drawing Resolution Outer Rotor Fillet Radii Outer Rotor 4065 4086 12.9 Root Radius 3 3.125 21.357 6095 12131 27.2 4158 15.1 14162 34.1 6170 19.1 Clear Design **Calculate** Profiles 6166 22.2 4180 14.6 6280 25.4 8369 34.9 Approx. 8384 36.6 0.2359 • Cu In/Rev 10397 42.9 Capacity Area Ratio 30.16 % Max Chamber Volume 954 mm3

27.66 mm3

Min Chamber Volume

Tip and axial clearances obtained from Nichols Portland design guidelines "Gerotor Selection & Pump Design v1.2"

Operating Conditions And Clearances For Some Typical Applications						
High Pressure Pump						
Pressures:	800 to 1200 psi	(5500 to 8300 kPa)				
Speeds:	1800 to 3600 rpm	(1800 to 3600 rpm)				
Displacements:	0.5 to 1.5 in3/rev	(8.2 to 24.5 cc/rev)				
Temperature range:	100 to 250°F	(40 to 120°C)				
Axial clearance:	.0002 to .0012 inches	(0.005 to 0.030 mm)				
O.D. clearance:	.003 to .005 inches	(0.08 to 0.13 mm)				
Gerotor tip clearance:	.003 inches max.	(0.08 mm max.)				
Eccentricity tolerance:	+ .0008 inches	(± .020 mm)				


Rotor Thickness greater than calculated 6.1mm.

To obtain a displacement of 0.700cuin/rev with this gerotor set, a thickness of 21mm is required (i.e. for '30' size pump). Therefore an assumption of 7mm was used for this '10' size pump. This gives a theoretical 'over capacity'

(0.236cu in/rev) but will compensate for greater leakage losses with a smaller gerotor, so would be feasible for the actual pumping elements.

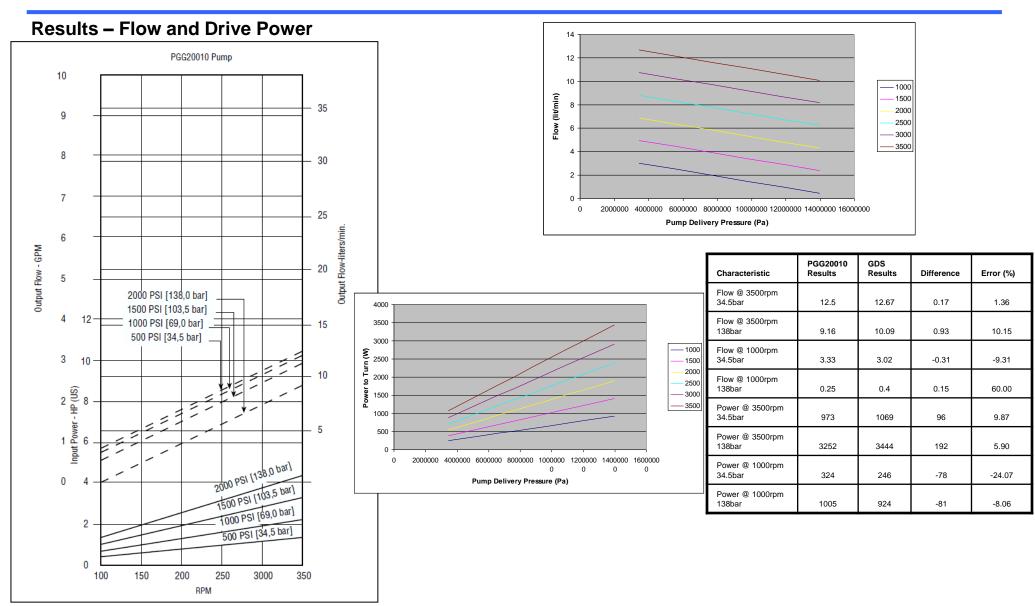
Build of GDS model – Porting Design

www.gerotordesignstudio.com

Parker Hannifin PGG20010:

Build of GDS model – Fluid / Material / Pump Properties

Only fluid property given in the Parker Hannifin product guide is a viscosity of 32cSt, for determination of the flow characteristics.

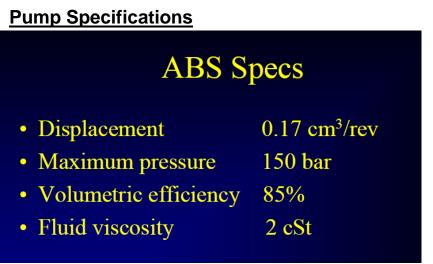

All other fluid and material properties were assumed to be as for the Bosch Rexroth pump design

Speed and pressure ranges taken to be consistent with the pump performance characteristics published by Parker Hannifin

OIL VISCOSITY: Recommended viscosity 150 SUS (3.65 engler). (32 centistokes) Minimum recommended viscosity 60 SUS (2.1 engler) (13 centistokes)

💮 Performance	
Fluid Properties	
Fluid Density (Kg/m^3)) 847
Kinematic Viscosity (c9	St) 32
Vapour Pressure (mmH	lg) 0.1
Bulk Modulus (GPa)	1.85
Gerotor Material Pr	roperties
Youngs Mod (GPa)	Inner Outer 210 210
Poissons Ratio	0.29 0.29
Coefficient of Friction	0.1
Pump Performance	<u>Range</u>
Speed Range (RPM)	1000 to 3500
Pressure Range (bar)	34 to 138
Calculate Performance	

Miniature Gerotor – Fluid Power Research Laboratory, University of Turin, Italy

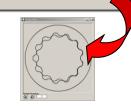

"Miniature Gerotor Pump Prototype for Automotive Applications" – S. Manco; N. Nervegna; M. Rundo; M. Margaria The Fluid Power Research Laboratory at Polytechnic of Turin, Italy

Presented at 3rd International Fluid Power Conference, March 5-6 2002, Aachen, Germany

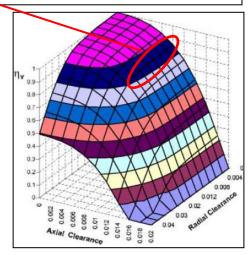
Known parameters:

www.gerotordesignstudio.com

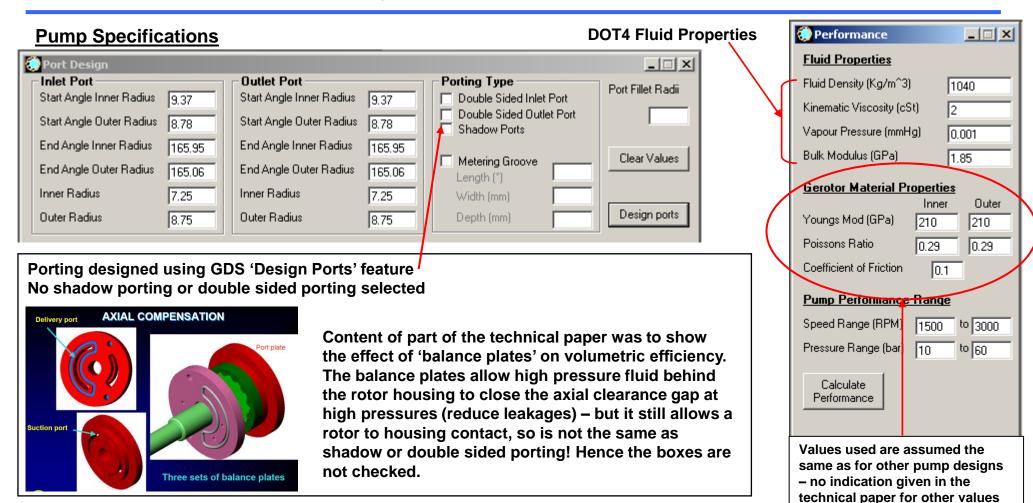
Assumed working fluid: DOT4 Brake Fluid



Very small Gerotor

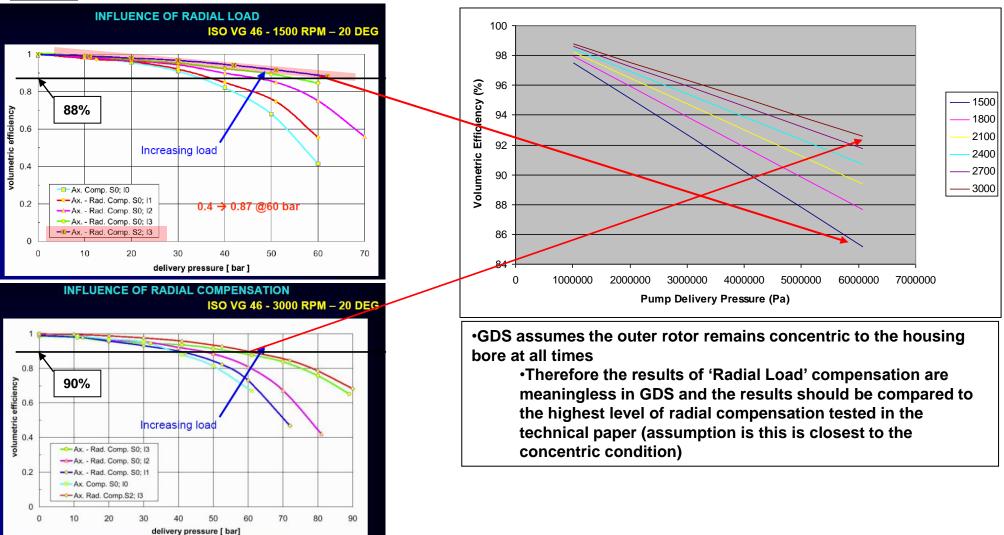


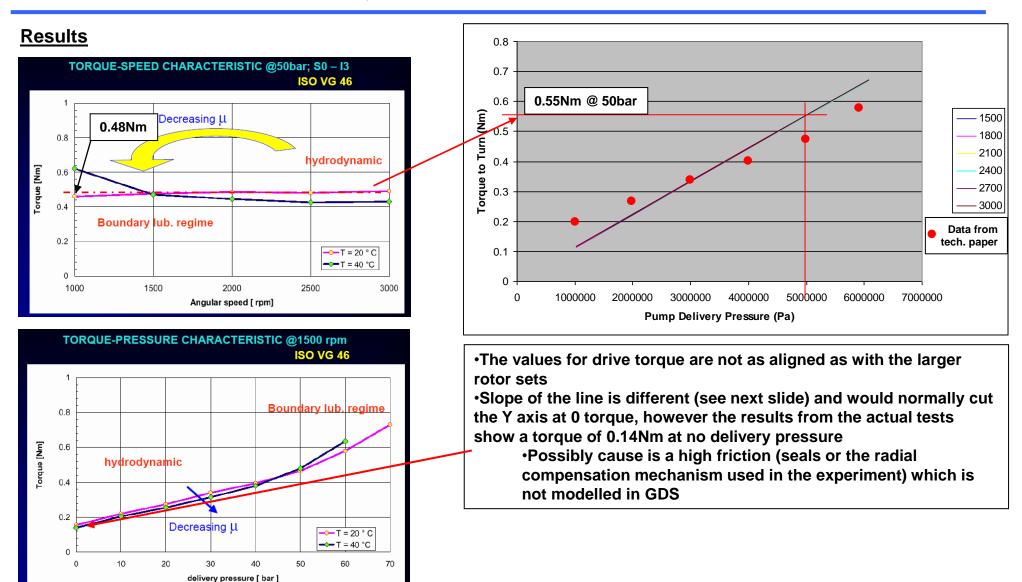
💮 Design			
Language: 🔡		Units: 💿 mm	O inches
Volume Reqd		No. Outer Lobes 13	
Shaft Diameter 5		Rotor Tip Clearance 0.002	
Rotor Thickness 3.8		Minimum Material Th 2	ickness
Maximum Outer R 23		Axial Clearance 0.01	Design Rotors
Eccentricity	Radius Inner 7.25	Root Radius C	luter Lobes
Drawing Resolutio	on Outer Rotor 0.5	Fillet Radii 8.75	Outer Rotor Root Radius
Clear Design		Calcula	te Profiles
Approx. Capacity	0.1848	CC/Rev	•
	Area Ratio	o 12.53 %	
Max Cha	mber Volum	e 16.04 mm3	
Min Cha	mber Volum	e 0.43 mm3	



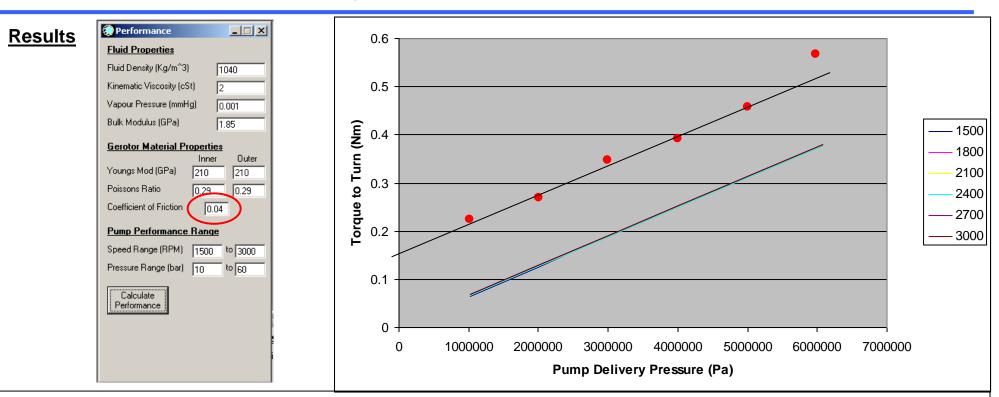
Required volume
No. Outer Lobes
Thickness
Outer Diameter
Design Rotors' feature used to create remaining design parameters
Iterations of Eccentricity and Radius

 Iterations of Eccentricity and Radius Inner Root used to bring Approx Capacity into correct range (allowance for some leakage loss)





Results



www.gerotordesignstudio.com

•The slope of the Torque vs Pressure line is directly related to the friction in the system •Friction for a non shadow or double-ported pump is mainly dictated by the face friction

•By changing the value of the coefficient of friction in GDS to 0.04 the slope of the line is replicated, however the offset of 0.14Nm still exists (other, non pump related friction as previously mentioned)

www.gerotordesignstudio.com

Summary

	Rexroth PGZ4-80	Parker PGG20010	Miniature Gerotor	BLACK text = Known Parameter for this study
Displacement	84.2	0.218	0.17	RED text = Unknown Parameter for this study LARGE text = Big influence on the calculated results
Shaft Diameter	42	12.7	5	
Thickness	39	7	3.8	Affects Capacity and Power Consumption
Outer Rotor OD	110	50.01	23	
Number of Lobes	9	5	13	
Rotor Tip Clearance	0.1	0.08	0.002	High Influence for Volumetric Efficiency
Axial Clearance	0.07	0.03	0.01	High Influence for Volumetric Efficiency and Power Consumption
Eccentricity	4.4	2.819	0.5	Direct influence on Capacity
Radius of Inner Rotor Root	35	12.9	7.25	
Radius of Outer Rotor Lobes	20	12.7	1.5	
Porting Geometry (detailed)	NO	NO	NO	
Shadow or Double Porting?	YES	YES	YES	
Fluid Properties	YES	NO	NO	High Influence for Volumetric Efficiency and Power Consumption
Material Properties	NO	NO	NO	
Coefficient of Friction	NO	NO	NO	High Influence for Non Shadow or Non Double Ported Applications for Power Consumption
Speed Range	YES	YES	YES	
Pressure Range	YES	YES	YES	

	Rexroth PGZ4-80	BLACK text = Known Parameter for this study RED text = Unknown Parameter for this study	
Displacement	84.2	LARGE text = big influence on the calculated results	
Shaft Diameter	42		
Thickness	39	Affects Capacity and Power Consumption	
Outer Rotor OD	110		
Number of Lobes	9		
Rotor Tip Clearance	0.1	High Influence for Volumetric Efficiency	
Axial Clearance	0.07	High Influence for Volumetric Efficiency and Power Consumption	
Eccentricity	4.4		
Radius of Inner Rotor Root	35		
Radius of Outer Rotor Lobes	20		
Porting Geometry (detailed)	NO		
Shadow or Double Porting?	YES		
Fluid Properties	YES	Very good correlation of results to published figures •~1% error for flow and power consumption •Rotor thickness not known precisely, but derived from scaling of given dimensions and other pump sizes in the PGZ4 family •Tip and axial clearances taken from other pumps of similar size	
Material Properties	NO		
Coefficient of Friction	NO		
Speed Range	YES		
Pressure Range	YES		

	Parker PGG20010	BLACK text= Known Parameter for this studyRED text= Unknown Parameter for this study	
Displacement	0.218	LARGE text = Big influence on the calculated results	
Shaft Diameter	12.7		
Thickness	7	Affects Capacity and Power Consumption	
Outer Rotor OD	50.01		
Number of Lobes	5		
Rotor Tip Clearance	0.08		
Axial Clearance	0.03		
Eccentricity	2.819		
Radius of Inner Rotor Root	12.9		
Radius of Outer Rotor Lobes	12.7		
Porting Geometry (detailed)	NO		
Shadow or Double Porting?	YES		
Fluid Properties	NO	High Influence for Volumetric Efficiency and Power Consumption	
Material Properties	NO	Good correlation of results to published figures •<10% error for flow and power consumption •Greater %age errors at lower value results (normal)	
Coefficient of Friction	NO		
Speed Range	YES		
Pressure Range	YES		
		 •Main assumption for this model was that a 4086 rotor set was used •Values could be very different if a different rotor set is actually used! 	

	Miniature Gerotor]	BLACK text = Known Parameter for this study	
Displacement	0.17	-	RED text = Unknown Parameter for this study LARGE text = Big influence on the calculated results	
Shaft Diameter	5			
Thickness	3.8		Possibly too many unknowns for accurate simulation	
Outer Rotor OD	23		•Study with actual gerotor set included radial compensation via application of load to the outer rotor – affects drive torque significantly	
Number of Lobes	13			
Rotor Tip Clearance	0.002	High Influence for Volumetric Efficiency		
Axial Clearance	0.01			
Eccentricity	0.5	Direct influence on Capacity		
Radius of Inner Rotor Root	7.25		•Coefficient of friction not known due to little detail on	
Radius of Outer Rotor Lobes	1.5		housing material and unknown influence of 'balance	
Porting Geometry (detailed)	NO		plates' •General 'trend' of results is still valid, if not	
Shadow or Double Porting?	YES		absolute values	
Fluid Properties	NO	High Influence for Volumetric Efficiency and Power Consumption		
Material Properties	NO			
Coefficient of Friction	NO	High Influence for Non Shadow or Non Double Ported Applications for Power Consumption		
Speed Range	YES			
Pressure Range	YES			